Underlying space $\R^n$, let $x = (x_1,\, x_2,\, \ldots,\, x_n) \in \R^n$. Define
\[ \norm{x}_p = \begin{cases} \sum_{i=1}^{n} \abs{x_i}, & \quad p=1 \\ \left( \sum_{i=1}^{n} \abs{x_i}^p \right)^{1/p}, & \quad 1<p<\infty \\ \max_{1\leq i \leq n} \abs{x_i}, & \quad p=\infty. \end{cases}\]
We want to show that $\norm{\cdot}_p$ is a norm on $\R^n$. This is so-called the Minkowski's inequality :
\[ \norm{x+y}_p \leq \norm{x}_p + \norm{y}_p, \]
for $x,\,y \in \R^n$, 1 ≤ p ≤ ∞ 1 \leq p \leq \infty 1 ≤ p ≤ ∞ .
This inequality comes from the Hölder's inequality :
\[ \abs{\sum_{i=1}^{n} x_iy_i} \leq \left( \sum_{i=1}^{n} \abs{x_i}^p \right)^{\frac{1}{p}} \left( \sum_{i=1}^{n} \abs{y_i}^q \right)^{\frac{1}{q}}, \]
for $x,\,y \in \R^n$, 1 ≤ p ≤ ∞ 1 \leq p \leq \infty 1 ≤ p ≤ ∞ , and 1 p + 1 q = 1 \frac{1}{p} + \frac{1}{q} = 1 p 1 + q 1 = 1 . Note that the H{\"o}ler's inequality is the same as: $\abs{\ip{x}{y}} \leq \norm{x}_p \norm{x}_q$.
When 1 p + 1 q = 1 \frac{1}{p} + \frac{1}{q} = 1 p 1 + q 1 = 1 , we say that p p p and q q q are conjugate of each other.
(1) p = 1 ⟹ q = ∞ p=1 \implies q=\infty p = 1 ⟹ q = ∞ , q = q ⟹ p = ∞ q=q \implies p=\infty q = q ⟹ p = ∞ .
(2) When p = q = 2 p=q=2 p = q = 2 , we get
\[ \abs{\sum_{i=1}^{n} x_iy_i}^2 \leq \left( \sum_{i=1}^{n} \abs{x_i}^2 \right) \left( \sum_{i=1}^{n} \abs{y_i}^2 \right). \]
This is called the Cauchy-Schwarz inequality .
Lemma 2.3.1
Let 1 < p < ∞ 1< p < \infty 1 < p < ∞ . Then we know 1 < q < ∞ 1 < q < \infty 1 < q < ∞ .
From the above figure, for all a , b ≥ 0 a,\,b \geq 0 a , b ≥ 0 , we have
a b ≤ area ( I ) + area ( I I ) = ∫ 0 a x p − 1 d x + ∫ 0 b y q − 1 d y = a p p + b q b . \begin{aligned} ab &\leq \operatorname{area}(I) + \operatorname{area}(II) \\ &= \int_{0}^{a} x^{p-1} \text{d}{x} + \int_{0}^{b} y^{q-1} \text{d}{y} \\ &= \frac{a^p}{p} + \frac{b^q}{b}. \end{aligned} a b ≤ area ( I ) + area ( I I ) = ∫ 0 a x p − 1 d x + ∫ 0 b y q − 1 d y = p a p + b b q .
Theorem 2.3.2 (Hölder's inequality)
For $x,\,y \in \R^n$, 1 ≤ p ≤ ∞ 1 \leq p \leq \infty 1 ≤ p ≤ ∞ , and 1 p + 1 q = 1 \frac{1}{p} + \frac{1}{q} = 1 p 1 + q 1 = 1 ,
\[ \abs{\ip{x}{y}} \leq \norm{x}_p \norm{x}_q. \]
Proof. It is easy to show for p = 1 p=1 p = 1 and p = ∞ p=\infty p = ∞ : When p = 1 p=1 p = 1 and q = ∞ q=\infty q = ∞ ,
\[ \abs{\ip{x}{y}} = \abs{\sum_{i=1}^{n} x_i y_i} \leq \left( \max_i \abs{y_i} \right) \sum_{i=1}^{n} \abs{x_i} = \norm{x}_1 \norm{y}_\infty. \]
Consider the case 1 < p , q < ∞ 1 < p,\,q < \infty 1 < p , q < ∞ . If $\norm{x}_p = 0$ or $\norm{y}_q = 0$, the inequality trivially holds. Thus, assume $\norm{x}_p \neq 0 \neq \norm{y}_q$. Put
\[ a_i := \frac{\abs{x_i}}{\norm{x}_p},\ b_i \frac{\abs{y_i}}{\norm{y}_q} \qquad \text{for $i=1;n$}. \]
Use the lemma to get
\[ \frac{\abs{x_iy_i}}{\norm{x}_p \norm{y}_q} \leq \frac{1}{p} \left( \frac{\abs{x_i}^p}{\norm{x}_p^p} \right) + \frac{1}{q} \left( \frac{\abs{y_i}^q}{\norm{y}_q^q} \right) \]
for each i = 1 ; n i=1;n i = 1 ; n . Add all of these,
\[ \begin{aligned} \frac{\sum_{i=1}^{n} \abs{x_iy_i}}{\norm{x}_p \norm{y}_q} &\leq \frac{1}{p} \underbrace{\left( \frac{\sum_{i=1}^{n} \abs{x_i}^p}{\norm{x}_p^p} \right)}_{=1} + \frac{1}{q} \underbrace{\left( \frac{\sum_{i=1}^{n} \abs{y_i}^q}{\norm{y}_q^q} \right)}_{=1} \\ &= \frac{1}{p} + \frac{1}{q} \\ &= 1 \end{aligned} \]
This implies $\sum_{i=1}^{n} \abs{x_iy_i} \leq \norm{x}^p \norm{y}^q$. Thus,
\[ \abs{\ip{x}{y}} \abs{\sum_{i=1}^{n} x_iy_i} \leq \sum_{i=1}^{n} \abs{x_iy_i} \leq \norm{x}^p \norm{y}^q. \]
Hence, the proof is completed. ■
Theorem 2.3.3 (Minkowski's inequality)
For $x,\,y \in \R^n$, 1 ≤ p ≤ ∞ 1 \leq p \leq \infty 1 ≤ p ≤ ∞ ,
\[ \norm{x+y}_p \leq \norm{x}_p + \norm{y}_p. \]
Proof. It is simple to verify when p = 1 p=1 p = 1 and p = ∞ p=\infty p = ∞ . So, let 1 < p < ∞ 1<p<\infty 1 < p < ∞ . Assume $\norm{x+y}_p \neq 0$, otherwise the inequality is obviously true. Then,
\[ \begin{aligned} & \sum_{i=1}^{n} \abs{x_i + y_i}^p \\ & \qquad = \sum_{i=1}^{n} \abs{x_i + y_i}^{p-1}\abs{x_i + y_i} \\ & \qquad \leq \sum_{i=1}^{n} \abs{x_i + y_i}^{p-1}\abs{x_i} + \sum_{i=1}^{n} \abs{x_i + y_i}^{p-1}\abs{y_i}. \end{aligned} \]
By the Hölder;s inequality,
\[ \begin{aligned} & \qquad \leq \left( \sum_{i=1}^{n} \abs{x_i}^p \right)^{\frac{1}{p}} \left( \sum_{i=1}^{n} \abs{x_i + y_i}^{(p-1)q} \right)^{\frac{1}{q}} \\ & \qquad\qquad + \left( \sum_{i=1}^{n} \abs{y_i}^p \right)^{\frac{1}{p}} \left( \sum_{i=1}^{n} \abs{x_i + y_i}^{(p-1)q} \right)^{\frac{1}{q}} \\ & \qquad = \left( \norm{x}_p \norm{y}_p \right) \left( \sum_{i=1}^{n} \abs{x_i + y_i}^{p} \right)^{\frac{1}{q}} \end{aligned} \]
Here, we used the fact that 1 p + 1 q = 1 ⇔ ( p − 1 ) q = p \frac{1}{p} + \frac{1}{q} = 1 \Leftrightarrow (p-1)q = p p 1 + q 1 = 1 ⇔ ( p − 1 ) q = p . Hence,
\[ \begin{aligned} \norm{x}_p \norm{y}_p &\geq \frac{\sum_{i=1}^{n} \abs{x_i + y_i}^p}{\left( \sum_{i=1}^{n} \abs{x_i + y_i}^{p} \right)^{\frac{1}{q}}} \\ &= \left( \sum_{i=1}^{n} \abs{x_i + y_i}^{p} \right)^{1-\frac{1}{q}} \\ &= \left( \sum_{i=1}^{n} \abs{x_i + y_i}^{p} \right)^{\frac{1}{p}} \\ &= \norm{x+y}_p. \end{aligned} \]
This completes the proof. ■
Theorem 2.3.4
For 1 < p < ∞ 1<p<\infty 1 < p < ∞ , $\left( l_p^n(\R) \right)^* = l_q^n(\R)$.
This theorem means:
(1) For each $f \in \left( l_p^n(\R) \right)^*$, there exists $a \in l_q^n(\R)$ such that $f(x) = \ip{a}{x}$ for any $x \in l_p^n(\R)$ and $\norm{f} = \norm{a}_q$.
(2) For each $a \in l_q^n(\R)$, the functional $f(x) = \ip{a}{x}$ belongs to $\left( l_p^n(\R) \right)^*$ and $\norm{f} = \norm{a}_q$.
Remark. When p = 1 p=1 p = 1 or p = ∞ p=\infty p = ∞ , we have
(1) $\left( l_1^n(\R) \right)^* = l_\infty^n(\R)$.
(2) $\left( l_\infty^n(\R) \right)^* = l_1^n(\R)$.
Now, we construct the L p L_p L p -spaces. Let ( X , A , μ ) (X,\, \mathcal{A},\,\mu) ( X , A , μ ) be a measure space, where X X X is a nonempty set, A \mathcal{A} A is a σ \sigma σ -algebra on X X X , and μ \mu μ is a measure on ( X , A ) (X,\,\mathcal{A}) ( X , A ) .
Let a function f : X → [ − ∞ , ∞ ] f : X \to [-\infty,\, \infty] f : X → [ − ∞ , ∞ ] be measurable, that is, f − 1 ( ( a , b ) ) ∈ A f^{-1}((a,\,b)) \in \mathcal{A} f − 1 ( ( a , b ) ) ∈ A for any open interval $(a,\,b) \subseteq \R$.
Then, for 1 ≤ p < ∞ 1 \leq p < \infty 1 ≤ p < ∞ , define
\[ \norm{f}_p := \left[ \int_X \abs{f}^p \text{d}{\mu} \right]^{\frac{1}{p}}. \]
A number a a a is called an essential upper bound of f f f if the measurable set f − 1 ( a , ∞ ) f^{-1}(a,\, \infty) f − 1 ( a , ∞ ) is a set of measure zero, i.e., i.e., if f ( x ) ≤ a f(x) \leq a f ( x ) ≤ a for almost all x x x in X X X . Let
\[ U_f^{\mathrm{ess}} := \set{a \in \R}{\mu(f^{-1}(a,\, \infty)) = 0}, \]
which is the set of all essential upper bounds. Then the essential supremum of f f f is defined as
ess sup f : = inf U f e s s . \operatorname{ess\,sup} f := \inf U_f^{\mathrm{ess}}. ess sup f : = inf U f e s s .
If U f e s s = ∅ U_f^{\mathrm{ess}} = \emptyset U f e s s = ∅ , then ess sup f = ∞ \operatorname{ess\,sup} f = \infty ess sup f = ∞ .
Now, let n o r m f ∞ = ess sup f norm{f}_\infty = \operatorname{ess\,sup} f n o r m f ∞ = ess sup f . Combining all the above concepts, we now define
\[ \begin{aligned} L_p(X,\, \mathcal{A},\, \mu) := \{f : X \to [-\infty,\, \infty] \,|\, & \text{$f$ is measurale} \\ & \text{and $\norm{f}_p < \infty$} \}. \end{aligned} \]
Example 2.3.5
(1) Let [ t ] X = { 1 , 2 , … , n } A = power set of X ( i.e., A = 2 X ) μ = counting measure \begin{aligned}[t] X &= \{1,\,2,\, \ldots,\, n\} \\ \mathcal{A} &= \text{power set of $X$} \quad (\text{i.e., $\mathcal{A} = 2^X$}) \\ \mu &= \text{counting measure} \end{aligned} [ t ] X A μ = { 1 , 2 , … , n } = power set of X ( i.e., A = 2 X ) = counting measure Then $L_p(X,\, \mathcal{A},\, \mu) = l_p^n(\R)$.
(2) Let $ \begin{aligned}[t] X &= \text{$[a,\,b]$ in $\R$} \\ \mathcal{A} &= \text{Lebesgue measurable sets in $[a,\,b]$} \\ \mu &= \text{Lebesgue measure} \end{aligned} $ Then, we can define L p [ a , b ] L_p[a,\,b] L p [ a , b ] with \[ \norm{f}_p := \left[ \int_a^b \abs{f}^p \text{d}{\mu} \right]^{1/p}. \]